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Preface 
The three measurement systems were developed and built by J. Louthain. M. Hayduk 

and R. Bussjager built and characterized the liber lasers. J. Haus developed the mode-locked 
laser model used to simulate the performance of the fiber lasers. 



1. Introduction 

Mode-locked erbium-doped fiber lasers are inexpensive compact sources of ultrashort 

pulses in the 1.55 urn wavelength regime. Ultrashort pulse sources have many potential 

applications including high-repetition-rate sources for telecommunications, local area networks, 

or RF digitization. Recent advances have been made in photonic analog to digital conversion. [1] 

Many passive mode-locking techniques have been presented in the past operating both in normal 

and anomalous dispersion regimes. Recently semiconductor saturable absorbers in the form of 

bulk, multiple quantum well (MQW) or single quantum well - saturable Bragg reflector (SBR) 

have been used to mode-lock linear fiber cavities [2-7]. Complex Ginzburg-Landau equations 

have also been used to model mode-locked laser operation successfully [3, 5]. In particular, 

Kutz et. al. and Haus et. al. made a direct comparison between simulations and experimental 

results on a fiber laser. [3, 5] The dispersion and nonlinearity of the components can be used to 

accurately model the cavity. 

In this paper we present measurements of components of a fiber laser mode-locked by 

MQW saturable absorber. Our cavity is high loss and its non-linear dynamics are dominated by 

the saturable absorber. The construction of our compact, polarization insensitive, passively 

erbium-doped fiber laser employing a MQW saturable absorber and a chirped fiber Bragg 

grating is shown in Figure 1. This is a high loss cavity with an estimated 60 % loss per round 

trip. The measured typical autocorrelation and optical spectrum of the fiber laser is shown in 

Figure 2.[5,8] 
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Fig. I. Schematic diagram of the laser cavity. Outputs "l" and "2" are used to characterize the laser, but 
the normal output is on the left. 
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Fig. 2. Autocorrelation spectrum (3.4 ps pulse width) and optical spectrum (0.92 nm 
spectral width) of output pulses from the laser cavity. 

We measured the dispersion of the fiber and Bragg gratings as well as the non-linearity of 

the MQW saturable absorber. Dispersion of optical fiber has become an essential performance 

factor, as bit rates and spectral bandwidths increase in telecommunication applications. Precise 

dispersion information is also important in designing ultra-fast optics. The nonlinearity of the 

saturable absorber is substantial since the structure contains 50-75 periods of 100 Ä InGaAs 100 



Ä InAlAs layers. This large saturation of absorption nonlinearity was required to overcome the 

high loss of the cavity. Unfortunately, large refractive nonlinearity accompanies the absorption 

nonlinearity. The dispersion in the chirped fiber Bragg grating was used in the laser to 

compensate for the large refractive nonlinearity of the saturable absorber. [8] Precise dispersion 

management is required for stable mode-locked operation.[ 5-7] 

The work performed in the measurement of mode-locked fiber laser components can be 

summarized by three efforts: 

1. We developed a measurement system to characterize the dispersion of optical 

fiber. We use spectral interference to measure the dispersion of fiber lengths of 

less than 1 meter to within 0.1-picosecond-resolution. 

2. We built a measurement system to characterize the dispersion of optical fiber 

chirped Bragg gratings. We measured the dispersion of chirped Bragg gratings 

using a phase-shift measurement technique. 

3. We investigated the nonlinearity of the multiple quantum well saturable 

absorber. The z-scan technique was performed on the saturable absorber to 

determine both the refractive and absorptive nonlinearity. 

2. Dispersion measurements of erbium-doped optical fiber 

We used a balanced Michelson interferometer and a broad-band LED, 60nm full-width- 

half-maximum (FWHM), centered at 1540 nm to measure the dispersion of the actual fiber used 

in the laser cavity. Often times dispersion in a small piece of fiber (< 1 m) can differ 

significantly from the average value of the entire spool. In addition, high-loss erbium and 

ytterbium-doped fiber cannot be measured by conventional time-of-flight measurements. Using 



this method, we were able to measure the linear dispersion ofless than a half meter of fiber down 

to as low as 4 fs/nm. The experimental setup is shown in Figure 3. One arm of the 

interferometer includes the fiber length used within the cavity and the other arm is a variable 

free-space section. The light travels through one port of the 3-dB coupler and reflects off the 

broad-band mirrors in each arm. [9] 

The following interference spectrum was collected at the other port and measured by the 

optical spectrum analyzer 

where 

I = Ifi
2 + Il/; + 2IfoIi,cos(<P(co)), 

<?>(cü) = ßß(co)d-ßik(co)L, 

(1) 

(2) 

Ifs, IJe, ßfs, and ßile are the respective intensities and propagation constants for the free space 

and dispersive element arms, co is the optical angular frequency, d  is the length of the free 

space arm, and L is the length of the dispersive element arm. [4,9,11] 
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Figure 3. Schematic of Michelson interferometer used to measure dispersion of optical components. 



If we expand ßdc in a Taylor series about co = coa corresponding to A = A0 and collect all constant 

terms into an unknown phase term fa, ${(0) becomes 

0(d)) = fa + AK)i- (co-a)0) + -ß2(a0)L(a)-6)0Y+-ß2(o)0)
L(&-°)o?+- (3) 

where fa is a constant, c is the speed of light, ß2 is the total group velocity dispersion, and ß3 is 

the third order dispersion of the fiber under test.[4,9,ll] We neglect terms higher than third 

order. Adjusting the free space arm until ßl(a>0)L = d/c makes the second term drop out, 

leaving the second order and higher terms. 

The wavelength point of symmetry where the phase shift through the free-space path is 

the same as the fiber path occurs at A = Aa. Adjusting the free-space pathlength will tune the 

interferometer to different wavelength symmetry points. For instance, the wide center peak in 

Figure 3 corresponds to this symmetry point where A = A0. Also, from this adjustment one can 

determine the sign of the dispersion. If increasing the free-space path causes the symmetry point 

to move to higher wavelengths, the ß2(a>0) term will be negative. If the symmetry point moves 

to lower wavelengths, the ß2(a>0) dispersion term will be positive. 

The interference spectrum at the output port contains nulls where #(a>) = (2« +1V and 

peaks where <j>{co) = 2nx as shown in Figure 4. We can now write Eq. (3) in the following form 

for the peaks in the interference pattern: 

FN=fa+-ß> 
Irtc    2TVC 

AN      A0 
+i* 

2m    2TZC 

\_AN      A0 

-2nN = 0 (4) 

where A0 is the symmetry point in wavelength, N is the peak location, and AN is the wavelength 

of the corresponding peak. [10] We set up a system of simultaneous equations for the three 

unknowns g>0, ß2, and ß3.   Each equation corresponds to a maximum (or minimum) of the 



interference pattern spectrum with the corresponding value of N.    The dispersion can be 

expressed as delay time dispersion, D, in units of ps/nm-km using the following relationship 

(5) 

where ß2 is the group velocity dispersion, c is the speed of light, and A0 is the wavelength. [6] 
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Figure 4. Typical interference spectrum measured by the optical spectrum analyzer. The associated phase 
is plotted on the right axis by locating the peaks and valleys and assigning the appropriate phase. 

Using the setup in Figure 3, we measured the dispersion of standard single mode fiber 

and erbium-doped fiber.   We used data acquisition and instrument control and a PC running 

appropriate software to solve Eq. (4) automatically. See Appendix I for the Labview™ program. 

This automation allowed us to take several readings.   The dispersion of standard single mode 

fiber is published as approximately 



4 *-4 A3 ps/nm-km, for 1200 nm < X < 1600 nm, (6) 

where X is the operating wavelength, Xa is the zero dispersion wavelength, and S0 is the zero 

dispersion slope.[13] Typical values are 1301.5 nm < A0 < 1321.5 nm and S0< 0.092 ps/nm-km. 

We used the typical value of 0.90 ps/nm-km for S0.[13] 

Figure 5 shows how our experimental results compare with the published dispersion of 

STANDARD FIBER for a 42.5-cm fiber length. At 1550 nm the dispersion is about 16.9 ± 1.4 

ps/nm-km and about 17.6 ± 1.4 ps/nm-km at 1560 nm. Notice how our measurements diverge 

from the published results as we moved away from 1550 nm. Our source was centered at 1540 

nm with a spectral width of 60 nm FWHM. Therefore, these variations are most likely due to 

low power levels in the tails of the LED spectrum. [9] 

Figure 6 shows our experimental results for a 38-cm erbium-doped fiber. The power 

levels in the erbium-doped fiber were lower than in the standard fiber measurements due to the 

absorption that occurred at 1530 nm. This contributed to more fluctuation in the measurements 

which in turn required more data points. Again, these measurements will be more accurate 

around 1550 nm. At 1550 nm the dispersion is about 8.5 ± 1.6 ps/nm-km and at 1560 nm it is 

about 10.4 ± 1.6 ps/nm-km.[9] 
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Figure 5. The squares are individual measurements of the dispersion of standard single mode fiber using 
the spectral interference method. The solid line is a linear fit to the data. The top and bottom dashed 
lines are the published dispersion specifications of standard fiber for a zero dispersion wavelength of 
1301.5 nm and 1321.5 nm, respectively. 
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Figure 6. The squares are individual measurements of the dispersion of the erbium-doped fiber using the 
spectral interference method. The solid line is a linear fit to the data. The erbium-doped fiber had a 
concentration of about 1200 parts per million and an outside fiber diameter of about 113 u.m. 



3. Dispersion measurements of chirped fiber Bragg gratings 

The chirped fiber Bragg gratings are much more dispersive (over two orders of 

magnitude) than standard optical fiber. Therefore, a time-of flight type measurement is more 

appropriate than an interferometric technique. Our experimental setup is shown in Figure 4. In 

this technique, laser light is intensity modulated with an RF signal and is sent through an equal 

power splitting 2x2 fiber coupler (3dB coupler) to the grating mirror under test. The light 

reflects off the grating and travels back through the splitter to a high-speed detector. Using an 

HP Network Analyzer, we measure the phase shift between the signal reflected off the grating 

and the input RF signal. As the wavelength of the tunable laser changes the phase shift changes 

due to the dispersion. The phase shift is then converted to group delay versus wavelength to 

illustrate the dispersion. [12] 

The chromatic dispersion, D(k), is obtained from the difference in the group delay at two 

closely spaced wavelengths. The dispersion is the average delay over the wavelength range. 

The resolution of the dispersion measurement is determined by the spectral width of the source. 

The spectral width of our tunable laser was 0.1 nm full-width-half-maximum (FWHM). 

Therefore, we were not able to measure the fine structure of the grating. The end fibers were 

angle cleaved to reduce spurious reflections from the end facets of the fibers. The following 

relation was used to calculate the chromatic dispersion coefficient in ps/nm: 

flffl-IO-xIf^-«^. (7) [360x/xA/l] 

where Ä-(Äl+Ä2)/2, 0(/ll2) are the measured phase shifts in degrees,  AA = A,-A2 is the 

difference in nm between the two optical wavelengths, and /  is the RF modulation frequency in 



Hz.[12|   We used a modulation frequency of 100 MHz.   The following simplified relation will 

find the absolute group delay in picoseconds I012 x [<t>(A)]/[360x /].[12] 
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Figure 7. Setup for chromatic dispersion measurement of a reflection fiber Bragg grating. 

We used the differential phase shift technique to measure the dispersion and reflection 

spectrums for three very different gratings. We employed data acquisition and instrument 

control and a PC running appropriate software to calculate the group delay. See Appendix II for 

the Labview™ program. Figures 8-10 show the group delays. The dispersion in ps/nm 

corresponds to the slope of the curve. The grating in Figure 8 is an ordinary highly reflective 

Bragg grating with a bandwidth of about 1.5 nm. It is very narrow with a relatively flat 

dispersion over the spectral width. Figure 9 shows the dispersion of a linearly chirped grating 

with a bandwidth of about 5.2 nm. The average slope from 1553 to 1556.5 nm is -10.3 ± 0.2 

ps/nm. Finally, in Figure 10 we show the dispersion of a 10 nm wide Bragg grating. This 

grating was built to be a wide-band reflector without any regard for dispersion characteristics. 

The grating has positive dispersion below 1556 nm and negative dispersion above 1556 nm. Due 

to etalon effects in the tunable laser, each of these plots have oscillations with a period of about 

0.35 nm.[9] 

10 
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Figure 8. Reflection magnitude and group delay of a narrow-band high-reflection Bragg grating. 
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Figure 9. The reflection magnitude and group delay of a wide-band chirped grating (3M CS-98- 
3312 serial # 8217-7008).   The slope over 1553 to 1556.5 nm is -10.3 ± 0.2 ps/nm. 
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Figure 10. The reflection magnitude and group delay of a wide-band chirped grating (3M CS- 
96-2006 serial # 6229-1006). 

4. Nonlinearity measurements of multiple quantum well saturable 
absorbers 

Next, we measured the nonlinearity of the saturable absorbers using the z-scan technique. 

The nonlinear absorption is the mechanism that provides the mode-locking of the laser. The 

refractive nonlinearity balances the dispersion within the cavity. We were able to determine the 

nonlinear absorption due to saturation of absorption and the refractive nonlinearity using the 

same experimental set-up. We determined the nonlinear absorption from an open aperture z- 

scan. This technique was first described by Sheik-Bahae.[l 5] 

Our Z-scan set-up is shown in figure 11. In order to get the resolution required we 

focused the laser beam source down to a spot-size of 6 um. We used a PC running appropriate 

software to automate the data acquisition. See Appendix III for the Labview™ program. 

The normalized open-aperture transmittance z-scan is 

12 



T(z,s = 1) = X ~^nr for M < 1, where 
, (m + 1)J 

1 + */, 
zo; 

r    _(l-exp(-aaL))/        _^w0
2/ 

' V " /a' "°        /A ' 

(8) 

(9) 

« is the linear absorption coefficient, ß is the two photon absoiption (2PA) nonlinear saturation 

of absorption, I0 is the open aperture peak irradiance, w0 is the beam waist, L is the sample 

thickness, and Ä is the wavelength. [15] Using these relationships we determined the nonlinear 

absorption, ß, by numerical evaluation. 

PM SM Fiber ... 
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Aperture 

.:■ D2 

-ZM—>-z 

Figure 11. Z-scan set-up for measuring saturable absorbers. 

The refractive nonlinear index in saturable absorber material is more difficult to extract 

since the z-scan output is dominated by the saturation of absorption. A thorough numerical 

evaluation done by Sheik-Bahae indicated that the nonlinear refractive index was determined 

within less than 10% uncertainty provided that qo(0) < 1 and \ß/2k]\ < l.[15] The second 

condition is met when Re(^3)) is larger than ImO^) or in other words when the nonlinear 

refraction dominates over the nonlinear saturation of absorption.   For cubic nonlinearity the 

13 



index of refraction is expressed in terms of nonlinear indices m (esu) or y (m7W) through 

n = nn+-2-\E\~ =nu+yf, (10) 

where no is the linear index of refraction, E is the peak electric field (cgs), and / represents the 

irradiance (MKS) of the laser beam within the sample.[15] The refractive nonlinearity can be 

determined by dividing the closed aperture normalized z-scan by the open aperture normalized z- 

scan. The result is a new z-scan where ATP.V agrees within 10% ofthat obtained from a purely 

refractive z-scan, given that the two conditions mentioned above are satisfied. From this result 

the refractive nonlinearity can be calculated by the following relation 

A7„ />- 
0A06kL   I0(\-s)02$ (11) 

'cjf 

where ATP.V is the difference between the peak and valley closed/open normalized z-scan, S is the 

aperture linear transmittance, k=2n/X, and I0 is the on-axis irradiance at the focus.[15] 

In Figure 12, we show a plot of the normalized Z-scan. From the open aperture case, we 

were able to determine the nonlinear absorption, ß, of-1.1 cm/W. The solid line is the closed 

aperture case divided by the open aperture case. From this normalized plot, we were able to 

determine the nonlinear refractive index, y, as -4.0x10"6 cm2/W. The relation ß/lky was -3.4 

and therefore did not satisfy the relation required to determine the refractive nonlinearity within 

less than 10% uncertainty. The terms n2 and /are related through the following conversion 

formula n2 =(cn0 /40x)y in m3/(watt-sec) or esu, where c is the speed of light in a vacuum.[15] 

In Figure 13, we compared the absolute z-scan transmittance of a number of MQW 

saturable absorbers. The quantum well region of the samples consisted of 50 periods 100 Ä 

InGaAs wells and 100 Ä In Al As barriers on an InP substrate, except #1948 which consisted of 

75 periods of 80 A InGaAs and 100 A InAlAs. The wavelength of the source was 1549 nm. The 

14 



absolute transmittance is calculated by dividing the optical power transmitted through the sample 

(Ps) divided by the optical power transmitted through free space (P^ = 2.1 mW). We found the 

transmittance to range from 0.25 to 0.5. The higher the peak the more saturation of absorption. 

Figure 14 shows that sample #1948 had the highest saturation of absorption and sample #1442 

had the lowest. From the plotted normalized transmittance we calculated the absorption 

coefficient, ß, of each of the samples. Using equations 8 and 9, we determined ßs of-2.5 cm/W, 

-2.9 cm/W, -1.8 cm/W, -1.1 cm/W, and -1.0 cm/W for sample #s 1948, 1590, 1643, unknown, 

and 1442, respectively. Figure 15 shows the absolute z-scan transmittance of a 500 urn InP 

substrate. The InP substrate thickness was much larger than the Raleigh range of the laser (zo) 

and therefore one cannot use the thin sample relationships to calculate the nonlinear effects. 
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Figure 12. Z-scan of saturable absorber #1590. The dashed line is the normalized transmittance for the 
open aperture case and the dotted line is for the closed aperture case (at 50% transmittance or S=0.5). 
From the open aperture case, we were able to determine the nonlinear absorption, ß, of-1.7 cm/W. The 
solid line is the closed aperture case divided by the open aperture case. From this normalized plot, we 
were able to determine the nonlinear refractive index, y, as -4.0x10'6 cm2/W. 

15 



0.55 

0.3 0.4 

Position (mm) 

Figure 13. This plot shows the absolute transmittance open aperture z-scan of a number of different 
multiple quantum well saturable absorbers. The samples are listed from highest to lowest transmittance 
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Figure 14. This plot shows the normalized transmittance of a number of different multiple quantum well 
saturable absorbers l .00 to l .35 u.m thick. The samples are listed from highest to lowest normalized 
transmittance 
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Figure 15. This is the absolute z-scan transmittance of a 500 (im InP substrate. The InP substrate 
thickness was much larger than the Raleigh range of the laser (z0) and therefore one cannot use the same 
relationships to calculate the nonlinear effects of the substrate alone. 

5. Conclusions 

A mode-locked fiber laser design incorporating a MQW saturable absorber and a chirped 

fiber Bragg grating is reliably mode-locked with pulse widths as short as 2 ps. No polarization 

control in the cavity is required. The dispersion in the cavity and the nonlinearity of the MQW 

saturable absorber was measured. The dispersion and nonlinearity measurements can be used to 

simulate the mode-locked operation of the laser. Our fiber dispersion measurements were 

consistent with published values, but there was some variability due to the stability of the 

interference measurements and the limited spectral range of our source. Koch et. al used a 

super-continuum fiber laser with a much higher signal to noise ratio over a very wide spectrum, 
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allowing for measurements over the entire spectral range from 1.1 um to 1.7p.m.[14] Koch et. 

al. also used two broad-band 3dB fused couplers instead of the bulk beam-splitters and mirrors to 

simplify alignment and to increase stability. [14] The measured dispersion of different fiber 

Bragg gratings was consistent with the type of gratings, but there were some fluctuations 

inherent in the tunable laser. These periodic fluctuations in the reflectivity measurements and 

the dispersion measurements were most likely due to the etalon effects within the tunable laser 

source. The 0.1-nm FWHM tunable laser was adequate for our purposes, since the spectral 

bandwidth of the mode-locked fiber laser was about 1 nm FWHM. If finer dispersion 

measurements are required, a more stable and narrower linewidth tunable laser source must be 

used. [9,12] 

The nonlinearity results were consistent with MQW structures determined with different 

methods in other papers.[16] The absorptive nonlinearity can be determined fairly easily using 

this technique. The refractive nonlinearity was much more difficult to determine due to the 

strong absorptive nonlinearity, but the sign of the refractive nonlinearity and the order of 

magnitude was easily determined. Some sources of error in our measurements would be due to 

our lack of an accurate measurement of the spot size of the laser. We estimated the spot size of 

the laser to be approximately 6 urn referenced to the e"2 power points. A more accurate 

characterization of the beam and spot size would lend more confidence to the measurements. In 

addition, a measurement of known reference material would allow us to calibrate the z-scan set- 

up. There was also some variability in the saturation of absorption depending upon where in the 

x-y plane of the MQW the laser was focused. Finally, there could have been some errors 

because we are measuring a compound structure of the multiple quantum well stack and the InP 

substrate. 
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Appendix 

/ Dispersion Calculationjinear.vi 

Front Panel: 

QSAGPIB 
Address  | 

Xo Beginning Wavelength 
(microns) 2 

Ö'ÖÖE'6 , 

Delta X Between points 
(microns) 

OÖÜE-ü" 

XV Graph 

-511BE+0- 

-52.00E+0-' 

-53.00E+0-; 

-5400E+0- 

-55.00E-MJ-' 

-56 O0E*0- 

-57.0QE*Q-! 

. -58.0ÜE+0-. 

-5900E*0-:  

'-eO.OOE+0-; 

-G1.00E+0- 

-62 00E+A-' 

-63.00E+Ü- 

-fHQ0E»0- 

-6S.ooE*a-: 

-66.O0E+0- 

-67 0ÜE.0-" " 

-68.OOE.O- 

-69.00E*tJ-. 

-63.86E+0-, 
16-4013 

Wi\ 
mmm msm 

Lin km 

L in km 2 

Stepper        | 
GPlBAddies;. 

m.. : 
Axis' 

Steps/micron 

This program calculates the dispersion. D in ps/nm/km, of a short length of optical 
fiber at a specific wavelength. It displays the optical interference spectrum centered 
at the wavelength of interest. Then the user selects the peaks and valleys using the 
cursors. The center wavelenth is determined as the midpoint between cursors 
"Val R-1" and "Val L-1." The user pushes the "calculate dispersion" button and the 
program calculates two dispersion values one from the location of the peaks and one 
from the location of the valleys. 

Valley Plot,,, 

Peaks Plot,3.'| 

Waveform B^vl 

:-i,«0:> Steppt ASKD;;1 WMoK 

.*r 
Peak Locations 2 

:jr=s=r,j 
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'r- r      ■ 
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fOOMiJ 
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0 0000"! 
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D (ps/nm-km) 
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peak/valley 
finder settings: 
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Peaks Output 
D (ps/nm-km) 

Ü 00 ' " 

Location in microns 
of the mirror 

Peak threshold 

Peak width 
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Dispersion Calculationlincar.vi Program Description: 

This program calculates the dispersion, D in ps/nm/km, of a short length of optical fiber at a 
specific wavelength. It displays the optical interference spectrum centered at the wavelength of 
interest. Then the user selects the peaks and valleys using the cursors. The user pushes the 
"calculate dispersion" button and the program calculates two dispersion values one from the 
location of the peaks and one from the location of the valleys. 

Block Diagram: 

ESI 
tEH— 

EH'' 

-pK 

l-ab**-«. 

EB 
Sgj"'''  !"'/      S2SS-1 

fc>  t> 

■^3^ 

m{ 

EääL., 

!== 

[iZi 

■f- . fc-   £■ Es3 

a 

^g 

Q _ 

22 



// Sweep Phase Wavelength.vi 

Front Panel 

Sweep Example 

Start program with above arrow. 
• .Se»parametersar)d,ptessStartSweep. , 

Leser will reset to the start wavelength then sweep to the stop wavelength. 

erroroui j 
^frgmumablojasarj 

status; 

code- 

source 

resource name p") ~ 

|gpib t   __    { GP1B address of tunable laser 

Network Analyzer Address     nm/reading 
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XV Graph of absolute phase difference (deg) vs. wavelength (nrn) 
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error out 
from network analyzer; 

itetuf      code       i 

s «.a      : 
'source * ~ i 
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%ti).M \w '■■■'■: 

Waveform Graph of absolute group delay (ps) vs. wavelength (nm) PlotO 
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100.00- 
60.80- 
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Sweep Phase Wavelength.vi Program Description: 

This VI calculates the group delay of a chirped bragg grating versus wavelength. It controls the 
tunable laser and takes the group delay data from the network analyzer. The network analyzer 
drives the electro-optic modulator and measures the phase difference after the tunable laser light 
has reflected back from the chirped bragg grating. It plots the group delay and sends the data to 
an ASCII file. From the slope of the group delay one can determine the dispersion or the amount 
of chirp in the grating in (ps/nm) 

Sweep Phase Wavelength.vi Block Diagram 
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Ill z-scan.vi 

Front Panel: 

DEVICE ADDRESSES- 

GPJB Address Stopper 
Distance to 
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z-scan.vi Program Description: 
This program controls an adjustable stage and takes detector measurements at user specified 
increments. You can set the detectors to read directly or taken a mean/median of N readings. 
The information is sent to an ASCII file for further analysis 
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z-scan.vi Block Diagram: 
Converts Ü tc. UlfJ 

1 to 1.00Ü 
210 10.000 

Lullt in 1 

l> 

3PIB Addr Detedorl 
EfiJ  

IGPIB Address      I 

100-0 
1000-1 
10000-2 

(WAVELENGTH 

hrinnnnftnnbofa mLnjU2|,| 1 |n 2] ^f"-° ■UDaDBBagDBQ °~B~t 

GPIB Addr Rel Detector I 

IU0 31W- 
nnnnnnannnn 

i*r 

s 
ns to wait while measurement 

nnnnonannocionoBnngnnofnnHnnn1 

m ■@ 

'nnnrinnnaBononnnnnnoonnnnBonnnnnnBnneiBnnn, 

|Z-scon Power Chart] 

'Em-      (±::i 

EM ] 

Uta 

Jv.;(J>   ^^ IZ-scanXV Graph] 

.rpa—Esyi 

:£> 

^^^S"^^^^?1p'n^^^T^^T?7^j^^^3D^r^^^^^^^D' 

ID DDDDODDaDDODaQDDDaDa MD O D  D D D 

26 



" ^SSS^SSS^S^SJ^ffi:^ 
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lOlDDQDIJQDDQDOnDIJ; 
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